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Abstract

Acoustic wave propagation predictions are reported based on two frequently used models of particle/
fluid two phase flow. It is shown that the predictions of one model are qualitatively correct while those of
the other are qualitatively incorrect. These results provide a concrete example of the extreme sensitivity of
two phase flow predictions to modeling assumptions.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this note is to point out a situation in which two equally plausible continuum
models of fluid/particle two-phase flow produce qualitatively (not just quantitatively) different
predictions concerning acoustic wave propagation. As discussed by Jean and Peddieson [1] and
illustrated by the numerous references cited therein, considerable uncertainty remains in the
continuum approach to mathematical modeling of particle/fluid two-phase flows. One unresolved
issue involves the role of the fluid stress tensor gradient in the momentum balance equations for
the two phases. Thus, the recent papers of Neri and Gidaspow [2] and Matonis et al. [3] have the
fluid phase stress tensor gradient acting only on the fluid phase (no sharing) while those by Jin and
Campbell [4] and Johri and Glasser [5] have the fluid phase stress tensor gradient shared by the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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two phases in proportion to their volume fractions (stress sharing). Other formulations also
appear in the literature such as that of Celik and Gel [6]. The no sharing and stress sharing models
are compared herein in the context of one-dimensional linearized acoustic wave propagation.
Both approximate and exact closed form solutions and exact numerical solutions are given for
wave speeds and both temporal and spatial damping factors.

The literature on wave propagation in particle/fluid two-phase systems is extensive and will not
be reviewed in this note. Two recent representative contributions are the papers by Chung et al. [7]
and Song [8]. Both of these contributions also illustrate the sensitivity of predictions to modeling
assumptions.
2. Governing equations

Consider a particle/inviscid fluid dispersion performing a one-dimensional motion. The flow
direction is denoted by z and the time t. For an inviscid fluid, the stress tensor gradient reduces to
a pressure gradient and stress sharing becomes pressure sharing. The appropriate one-dimensional
mass balance and linear momentum balance equations are applicable to either the continuous
(fluid) phase ði ¼ 1Þ or the dispersed (particulate) phase ði ¼ 2Þ and have the respective forms:

qtri þ qzðriwiÞ ¼ 0; i ¼ 1; 2 (1)

and

riðqtwi þ wiqzwiÞ ¼ �qzpi þ Fi; i ¼ 1; 2, (2)

where each phase has mass density ri, velocity wi, pressure pi, and body force per unit volume Fi.
Let

r1 ¼ rcð1� jÞ; r2 ¼ rdj,

p1 ¼ ð1� djÞp; p2 ¼ djp,

F1 ¼ �f þ bc � dpqzj; F2 ¼ f þ bd þ dpqzj, (3)

where rc is the true fluid density, rd is the true particulate density, j is the volume fraction of
particle material, p is the fluid pressure, d is the pressure sharing factor (to be discussed
subsequently), f is the interphase force per unit volume applied to the dispersed phase by the
continuous phase, and bc and bd are the respective fluid phase and particle phase external body
forces per unit volume. Substituting Eqs. (3) into Eqs. (1) and (2) yields

qtðrcð1� jÞÞ þ qzðrcð1� jÞwcÞ ¼ 0,

qtðrdjÞ þ qzðrdjwdÞ ¼ 0,

rcð1� jÞðqtwc þ wcqwcÞ ¼ ð1� djÞqzp � f þ bc,

rdjðqtwd þ wdqtwdÞ ¼ �djqzp þ f þ bd . ð4a2dÞ

Inspection of Eqs. (4c,d) shows that the fluid phase pressure gradient acts only on the fluid phase
for d ¼ 0, but is shared by the phases in proportion to their volume fractions for d ¼ 1. Thus, in
the present work d ¼ 0 corresponds to the no sharing model while d ¼ 1 corresponds to the
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pressure sharing model. While Eqs. (4) are formally valid for any value of d, only d ¼ 0 and d ¼ 1
will be considered subsequently.
3. Acoustic wave propagation

It is desired to apply Eqs. (4) to small amplitude acoustic wave propagation with body forces
neglected (bc ¼ 0, bd ¼ 0). Toward this end consider small disturbances imposed on a uniform
quiescent initial state. Thus

rc ¼ rc;0 þ rc;p; p ¼ p0 þ pp; wc ¼ 0þ wc;p,

wd ¼ 0þ wd ;p; f ¼ 0þ f p; j ¼ j0 þ jp. (5)

The first terms on the right-hand side of Eqs. (5) represent the initial state and the second terms on
the right-hand side are the disturbances (perturbations). Substituting Eqs. (5) into Eqs. (4),
neglecting all terms containing products of perturbations (to achieve linearization about the initial
state), and rewriting the results in terms of the original variables leads to

ð1� j0Þqtrc � rc;0qtjþ rc;0ð1� j0Þqzwc ¼ 0,

qtjþ j0qzwd ¼ 0,

rc;0ð1� j0Þqtwc � ð1� dj0Þqzp þ f ¼ 0,

rdj0qtwd þ dj0qzp � f ¼ 0. ð6a2dÞ

Implicit in the work leading to Eqs. (6) is the restriction that the constitutive equations for p

and f must have linearized forms. Here it is assumed that

p ¼ p0 þ a2ðrc � rc;0Þ,

f ¼ rdj0Nðwc � wdÞ þ rc;0j0Mðqtwc � qtwdÞ, ð7a;bÞ

where a is the speed of sound associated with the quiescent initial state of the continuous phase, N

is a drag modulus, and M is an added mass modulus. In Eq. (7a), it is assumed that the fluid
pressure is a function of fluid density only (to avoid the necessity of involving the phasic energy
equations). This is a better assumption for liquids than for gases but, in any case, does not
fundamentally alter the nature of the results. Eq. (7b) represents the interphase force as a linear
combination of a term proportional to relative velocity (steady drag contribution) and a term
proportional to relative acceleration (added mass contribution). Using Eq. (6b) to eliminate j
from Eqs. (6a,c,d) and substituting Eqs. (7) into Eqs. (6c,d) leads to the three equations

ð1� j0Þðqtrc þ qzwcÞ þ rc;0j0qzwd ¼ 0,

rc;0ðð1� j0 þ j0MÞqtwc � j0MqtwdÞ þ ð1� dj0Þa
2qzrc þ rdj0Nðwc � wd Þ ¼ 0,

ðrd þ rc;0MÞqtwd � rc;0Mqtwc þ da2qzrc þ rdNðwd � wcÞ ¼ 0 ð8Þ

containing only the dependent variables wc, wd , and rc.
To investigate harmonic wave propagation let

rc ¼ ReðA expðið‘z � otÞÞÞ; wc ¼ ReðB expðið‘z � otÞÞÞ; wd ¼ ReðC expðið‘z � otÞÞÞ, (9)
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where A, B and C are constants, Re means ‘‘real part of’’, and i ¼
ffiffiffiffiffiffiffi

�1
p

. The quantities ‘ and o
appearing in Eqs. (9) will be referred to herein as the respective complex circular wave number and
complex circular frequency. Substituting Eqs. (9) into Eqs. (8) produces three homogeneous
algebraic equations in A, B, and C. Equating the corresponding determinate of the coefficients to
zero yields

rc;0ð1� j0Þðrdð1� j0Þ þ ðrc;0ð1� j0Þ þ rdj0ÞMÞo3 þ irdð1� j0Þðrc;0ð1� j0Þ þ rdj0ÞNo2

� rc;0ðð1� j0Þðrc;0dj0 þ rdð1� dj0ÞÞ þ rc;0MÞða‘Þ2o� irc;0rdNða‘Þ2 ¼ 0. ð10Þ

These equations hold for both ‘ regarded as a known real quantity with o to be determined and
o regarded as a known real quantity with ‘ to be determined. For the former

o ¼ oR þ ioI (11)

and

z ¼ �oI ; l ¼ 2p=‘; c ¼ oR=‘ (12)

are the respective temporal attenuation coefficient, wavelength, and wave speed of a temporally
damped right propagating harmonic wave. For the latter

‘ ¼ ‘R þ i‘I (13)

and

Z ¼ ‘I ; t ¼ 2p=o; c ¼ o=‘R (14)

are the respective spatial attenuation coefficient, period, and wave speed of a spatially damped
right propagating harmonic wave. Eq. (10) can be written in the dimensionless form

ð1� j0Þð1� j0 þ ðð1� j0Þ=r þ j0ÞMÞO3 þ ið1� j0Þð1� j0 þ rj0ÞO
2

� ðð1� j0Þðdj0=r þ 1� dj0Þ þ M=rÞL2O� iL2 ¼ 0, ð15Þ

where

r ¼ rd=rc;0; O ¼ o=N; L ¼ a‘=N. (16)

With L a known real quantity, Eq. (15) is a cubic equation to solve for O. Since the cubic
formula is unwieldy, numerical solutions of Eq. (15) will be reported subsequently. Before doing
this, it is useful to seek an approximate closed form solution to Eq. (15) for small volume fractions
ðj051Þ. This is accomplished by rewriting Eq. (15) in the approximate form

ðO� LÞðOþ LÞðð1þ M=rÞOþ iÞ ¼ j0Oðð2ð1þ M=rÞ � MÞO2 þ ið2� rÞO

� ð1þ dð1� 1=rÞÞL2Þ ð17Þ

(where all terms that are nonlinear in j0 have been neglected), finding a first approximation by
neglecting the right-hand side, and then finding a second approximation by iteration. The
results are

O1;2 ¼ ð�1þ j0ð�ð2� r þ ð1þ dð1=r � 1Þ þ Mð2=r � 1ÞÞð1þ M=rÞL2Þ

þ ið1� r þ dð1� 1=rÞÞLÞ=ð2ð1þ ð1þ M=rÞ2L2ÞÞÞL ð18Þ
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and

O3 ¼ � ið1þ j0ðr þ ð1þ dð1� 1=rÞÞð1þ M=rÞ2L2Þ=ðð1þ M=rÞ

�ð1þ ð1þ M=rÞ2L2ÞÞÞ=ð1þ M=rÞ. ð19Þ

The corresponding dimensionless temporal attenuation factors are

Z1;2 ¼ j0ðr � 1Þð1� d=rÞL2=ð2ð1þ M=rÞ2L2Þ (20)

and

Z3 ¼ ð1þ j0ðr þ ð1þ dð1� 1=rÞÞð1þ M=rÞ2L2Þ=ðð1þ M=rÞð1þ ð1þ M=rÞ2L2ÞÞÞ=ð1þ M=rÞ

(21)

while the corresponding wave speeds are

C1;2 ¼ �ð1þ j0ðð2� r þ ð1þ dð1=r � 1Þ þ Mð2=r � 1Þð1þ M=rÞL2Þ=ð2ð1þ ð1þ M=rÞ2L2ÞÞÞ

(22)

and

C3 ¼ 0, (23)

where

Z ¼ �O1 ¼ z=N; C ¼ OR=L ¼ c=a. (24)

Since the wave speeds and the attenuation factors all depend on the wave number, harmonic wave
propagation is found to be dispersive.

Eqs. (20) and (22) describe waves propagating in the positive ðC140Þ and negative ðC2o0Þ
directions with equal wave speeds in the infinite region �1ozoþ1 while Eqs. (21) and (23)
describe a non-propagating wave. Physically all the three temporal attenuation factors should be
positive (since the quiescent state cannot be unstable). To the order of approximation of the
solution process, this condition is fulfilled for Z3 because the term multiplied by j0 must always
be regarded as small compared to unity. On the other hand, Eq. (20) indicates that Z1;2X0 for all r

with d ¼ 1 but only for rX1 with d ¼ 0. This is true regardless of the value of M.
Some representative sets of results obtained solving Eq. (15) numerically are given in Table 1. A

number of combinations of d, j, r and M are represented. All the results shown in Table 1
correspond to L ¼ 3, but several other values of L were also employed and all produced
qualitatively similar results. In all cases it can be seen that Z1;240 for all r with d ¼ 1 while
Z1;2X0 only for rX1 with d ¼ 0. Numerous other calculations (not reported for the sake of
brevity) exhibited the same behavior.

With O a known real quantity Eq. (15) is a quadratic equation to solve for L. It can be rewritten as

L2 ¼ O2ð1� j0ÞðR þ iIÞ, (25)

where

R ¼ ð1� j0 þ rj0 þ ð1� j0Þð1� j0 þ ðð1� j0Þ=r þ j0ÞMÞð1� dj0 þ dj0=r

þ M=ðrð1� j0ÞÞÞO
2Þ=ð1þ ðð1� dj0 þ dj0=rÞð1� j0Þ þ M=rÞ2O2Þ, ð26Þ
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Table 1

Attenuation factors and wave speeds

j0 r M d Z1;2 Z3 C1;2

0.05 0.5 0.5 0 �0.00308 0.51265 �1.03278

0.05 0.5 0.5 1 +0.00286 0.50077 �1.04496

0.1 0.5 0.5 0 �0.00623 0.52598 �1.06858

0.1 0.5 0.5 1 +0.00537 0.50276 �1.09297

0.5 0.5 0.5 0 �0.03266 0.66533 �1.55071

0.5 0.5 0.5 1 +0.01410 0.57179 �1.67277

0.1 0.1 0.5 0 �0.00126 0.16948 �1.09677

0.1 0.1 0.5 1 +0.00895 0.14906 �1.16948

0.1 1 0.5 0 0 0.71429 �1.05409

0.1 1 0.5 1 0 0.71429 �1.05409

0.1 10 0.5 0 +0.37568 1.15819 �0.973904

0.1 10 0.5 1 +0.32035 1.26885 �0.932029

0.1 0.5 0 0 �0.02475 1.10506 �1.05694

0.1 0.5 0 1 +0.02078 1.01399 �1.10340

0.1 0.5 0.5 0 �0.00623 0.52598 �1.06858

0.1 0.5 0.5 1 +0.00537 0.50276 �1.09297

0.1 0.5 1 0 �0.00274 0.34476 �1.07285

0.1 0.5 1 1 +0.00239 0.33449 �1.08919
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I ¼ Oj0ð1� j0Þðr � 1Þð1� dj0 � dð1� j0Þ=rÞ=ð1þ ðð1� dj0 þ dj0=rÞð1� j0Þ þ M=rÞ2O2Þ.

(27)

The exact solution of Eq. (25) can be written as

L ¼ �ðLR þ iLI Þ, (28)

where

LR ¼ Oððð1� j0ÞðR
2 þ I2Þ

1=2
þ RÞ=2Þ1=2; LI ¼ Oððð1� j0ÞðR

2 þ I2Þ
1=2

� RÞ=2Þ1=2sgnðIÞ. (29)

The respective corresponding spatial attenuation factors and wave speeds are

Y 1;2 ¼ �LI ; C1;2 ¼ �O=LR, (30)

where

Y ¼ LI ¼ aZ=N; C ¼ O=LR ¼ c=a. (31)

When the positive signs are selected, Eqs. (30) describe a harmonic wave propagating in the positive
direction in the semi-infinite region zX0. When the negative signs are selected, Eqs. (30) describe a
harmonic wave propagating in the negative direction in the semi-infinite region zp0. Because of the
dependence of both Y and C on frequency, the wave propagation is again dispersive. Physically, the
spatial attenuation in either case must be in the direction of propagation, requiring I40. Eq. (27)
indicates that this condition will be violated for d ¼ 0 and ro1 (regardless of the value of M), but for
d ¼ 1 will be satisfied for all r.
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It is important to state that the characteristics of Eqs. (6) can be shown to be real. Thus the non-
physical behavior discussed above is not the result of an ill-posed system of equations.
4. Conclusion

In the foregoing section it was shown that the no sharing continuum fluid/particle two-phase
flow model employed herein predicted qualitatively incorrect results for acoustic wave
propagation while the corresponding pressure sharing model predicted qualitatively correct
results. It would be wrong, however, to claim superiority for the pressure sharing model on the
basis of this single example for at least two reasons. First, several aspects of the present models are
highly simplified. (There is no intrinsic particulate phase pressure, for example). It is interesting,
nonetheless, that the inclusion of the added mass effect does not change the qualitative results,
even though added mass effects are thought to be most important for ro1 where the difficulty
occurs. Second, there may well be other situations in which the predictions of qualitatively correct
and incorrect results would be reversed. The present analysis illustrates the sensitivity of
continuum fluid/particle two-phase flow equations to modeling details. This sensitivity may not
manifest itself when numerical solutions to complicated flow problems are being computed. It is
possible, for example, that the artificial dissipation present in all two phase flow codes could damp
out the unphysical behavior described heretofore. The results presented herein are an indication of
the fact that the task of developing reliable general continuum models of fluid/particle two-phase
flow is far from completed.

Many of the earlier studies of the acoustics of particle/fluid dispersions were based on the so-
called ‘‘dusty gas’’ model (see, for instance, Marble [9]). In the present notation this corresponds
to rb1, j051 simultaneously. It can be seen from Eqs. (20) and (26) that the non-physical
predictions pointed out herein do not occur in this limit.
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